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Abstract

Three-dimensional (3D) LIDAR systems are becoming the sensor of

choice for many mobile robotics applications. This can be attributed to

their accuracy, robustness, and strong invariance to ambient illumination

levels. In many applications, adoption is only limited by the high system

cost. In this work, we investigate the use of low-cost 3D LIDAR systems

in a people tracking application for a smart wheelchair system. The limited

spatial resolution of these systems proved challenging in the people track-

ing task. To solve this problem, we employed a k-Nearest-Neighbor (k-

NN) appearance classifier in conjunction with an extended Kalman filter

(EKF)-based motion classifier. Preliminary experimental results indicated

a successful tracking rate of over 95%.
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1 INTRODUCTION

Mobile robotics has been gaining steady momentum for many years now. The year

2010 is considered by some to be an influential year for the mobile robotics field [1].

Educational robots such as iRobot’s Create platform have become ubiquitous at uni-

versities, allowing students to gain experience in the field of robotics. The author of

this paper began his career in robotics from one of these classes. Inspirations from

robotic and pattern recognition courses culminated into enabling pedestrian detection

on an autonomous robotic platform.

1.1 Motivation

The rise of three-dimensional (3D) Light Detection and Ranging (LIDAR) systems

has generated many new research possibilities in the field of robotics. The case for

3D LIDARs was made convincingly in the 2007 DARPA Urban Challenge. Only 6

vehicles (of 89 original entries) completed the race; all 6 relied upon (then) new 3D

LIDAR systems [2]. As LIDARs increase in popularity, their capabilities improve as

their prices drop. However, LIDARs are not the only 3D systems on the market. Other

low-cost 3D sensors, like Microsoft’s Kinect, enable a range of indoor applications

at a previously unheard of price point [3]. There is a rising tendency for autonomous

robotics systems to move towards 3D data due to the many advantages it offers (Section

2).

All 3D sensors measure data in a similar format, a cloud of points in Euclidean

space. Research into effectively using this data has only recently begun, offering a

wide variety of new research topics. An area of focus is the successful navigation

of autonomous robots through physical environments (indoors or outdoors.) A subset

of this problem is the capability to track pedestrians. Urban areas and sidewalks in

particular are often congested with pedestrian traffic making navigation difficult. As

a result, there is significant interest in reliable detection and tracking of persons in a

2
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variety of environmental conditions. While much work has focused upon 3D LIDARs

for use on automobiles, little has been done with field and service robots operating

among pedestrians. This is not unexpected, as the high cost of 3D LIDARs makes

them not economically viable for many small personal applications. However, the

recent release of low-cost, low-resolution 3D flash LIDARs offers the potential for

robust 3D perception in various environments.

1.2 Background

This work will focus on the use of a 3D LIDAR system attached to an autonomous

wheelchair to determine obstacles (pedestrians) in its path. A brief introduction to

LIDAR systems and pattern classification is provided to define terms in this field and

give information relevant to this work.

A LIDAR uses the concept of time of flight to determine distances. Given the speed

of light, the distance of a point can be determined by measuring the time it takes for

light to return from the object. A laser range finder used by contractors to measure

distances is an example of a LIDAR, typically one distance is returned. A 2D LIDAR

takes advantages of the fact that the speed of light is fast enough for the sensor to rotate

a laser along a plane and record a multitude of points in a relatively short period of time

(e.g., 1/60th of a second.) The pool of points is then returned as “one” measurement

or scan. A subset of 3D LIDARs apply this concept in three dimensions using off-axis

rotation with a group of lasers [4].

Another subset of 3D LIDARs activates an array of lasers in unison to take a scan,

and returns the distance taken by each laser. These LIDARs are known as flash LIDARs

[5] (analogous a digital camera returning distances x, y, z in Euclidean space instead

of RGB.)

In this work, data returned by the LIDAR was examined for pedestrians. This task

is known as pattern matching or classification. The first step in pattern matching is

3
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determining the organization of the data; a sensor returns many points which have no

contextual information. These points are grouped and related together using a cluster-

ing or labelling algorithm. The clusters of points are then passed to an algorithm that

makes a decision on the group of points as a whole, assigning the cluster of points to

a class (e.g., car, pole, person, tree.) Features are meaningful values that describe a

property of the data or show tendencies. They are extracted from grouped data points.

For example, it might be of interest to determine the distance between the two farthest

points in a scan. This distance represents the width of the cluster, coupled with the

assumption that a pedestrian will not have a width greater than 1 meter, a segmenting

feature has been generated. Determining what useful features to extract from point

clouds is an essential research area of pattern matching. In essence, pattern match-

ing is determining what features separate one class of objects from all other classes of

objects.

Upon classification as a person, the object was tracked. Tracking an object is the

act of correlating the location of the object between scans. This allowed the platform

in this work to determine unique objects and predict their motion given a few scans.

By predicting motion, an autonomous platform can consider the path of the pedes-

trian and generate a navigational plan that is convenient and safe for pedestrian and

robot. Tracking is key for safe and efficient operation in crowded pedestrian environ-

ments. For example, if an autonomous robot determines a pedestrian walking towards

it, slightly to its left, it should:

1. Continue normal operation, e.g., not stop.

2. Change its navigational plan to slightly veer right.

1.3 Objective

The objective of this work is to investigate the suitability of coarse low-cost 3D LI-

DAR systems for real-time people tracking on a mobile platform. The results have po-

4
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tentially broad applications to field and service robotics, in cases where human-robot

interactions are of necessity.

2 RELATED WORK

There has been extensive work using camera systems and image analysis algorithms

for pedestrian tracking, a survey of which by Geronimo et al. can be found in [6]. The

paper identifies limitations of camera-based pedestrian tracking, many of which can be

resolved with 3D data. Two difficulties with camera-based tracking are ground plane

estimation and region of interest extraction. Ground plane estimation is the determina-

tion of the pixels signifying the ground in an image. Removal of these pixels, leaves

only pixels that represents objects of interest in the image. Region of interest extraction

is the determination of the pixels in an image that a describe a unique object. Since an

image is simply many colored points, there is no underlying data or contextual infor-

mation that relates points. The relation between points needs to be determined, often a

computationally intensive problem. It should be noted that finding regions of interest

is simpler when the ground has been removed from an image. It is common for image

analysis procedures to build upon each other in such a manner.

There has also been recent work with LIDAR-based approaches. Spinello and Sieg-

wart used a Velodyne 3D LIDAR to investigate pedestrian tracking in parts [7]. Their

approach split a pedestrian into layers, and each layer voted to determine if the object

is a pedestrian. Their approach is powerful in that they ignore the ground plane (e.g.,

when dealing with multi-level ground planes, sidewalks to roads, etc.) and that it can

leverage techniques developed and expanded upon in 2D LIDAR research. Douillard

et al. combined a 3D lidar with a camera for urban classification [8]. Objects such as

trees, cars, and pedestrians were classified using a rule-based system approach.

Navarro-Serment et al. used a combination of multiple 2D and 3D scanners [9].

Point clouds gathered by the 3D scanner were projected into 2D after ground plane

5
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removal. Classification was then done using thresholds set for an object’s geometry,

velocity, and distance. Tracking was done using a simple rule, if the object was inside

the bounding box of an object from the previous frame, they were the same object. In

later work [10], a similar two-dimensional approach with two linear Support Vector

Machines (SVMs) was used. Linear SVMs are one of many approaches to pattern

classification. Both papers use a Geometric Score (GS) and Motion Score (MS) to

make classifications.

Prokhorov used a Recurrent Neural Network (RNN), yet another approach to pat-

tern classification, to achieve a high vehicle detection rate [11]. His approach relied on

the RNN to do the segmentation based on the temporal order of points received from

a Velodyne LIDAR. Object detection was high with a low number of false detections.

This paper stands out in its unique classification and segmentation method.

Compared to these works, the approach presented here differed in several ways.

First and foremost, the focus was on people tracking in crowded environments using

low-cost 3D LIDARs. Low-cost LIDARs achieve price reductions by lowering the

resolution (the number of points returned per scan) and the frequency of scans. The

limited resolution of such LIDARs introduced significant challenges to the classifi-

cation process, and the low frequency posed challenges to the tracking process. To

achieve consistent people tracking in crowded environments, a k-Nearest-Neighbor

(k-NN) appearance classifier was employed in conjunction with an extended Kalman

filter (EKF) motion based classifier. The former proved to be advantageous in dealing

with imperfect data, while the latter served to improve tracking frequency and reduce

classification of inanimate objects as pedestrians. Details on the approach now follow.

6
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3 TECHNICAL APPROACH

3.1 Development Platform

The development platform for this project was based upon the smart wheelchair system

(SWS) developed for the Automated Transport and Retrieval System (ATRS) shown

at Figure 1 [12]. Odometry measurements are provided by high-resolution quadrature

encoders (8,192 Counts Per Revolution). For exteroceptive sensing, the SWS integrates

an IFM Effector O3D200 flash LIDAR. The IFM provides 3D measurements of the

environment at reasonable cost (<$1,500US). The tradeoff for the low price point is

fairly coarse resolution (64× 50) over a field-of-view of 40◦ × 30◦ , respectively.

Figure 1: Prototype smart wheelchair system integrating the the flash LIDAR (encir-
cled white).

3.2 Object Segmentation

Fundamental to the approach was the ability to easily segment objects of interest (i.e.,

persons vs. non-persons) from the background scene. Camera-based techniques strug-

gle with this step as their data is in color space. The advantage of 3D information is

apparent here; objects cannot occupy the same physical space. Thus, it can be assumed

7
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that any clusters of points are a unique object.

The first step in determining clusters was to establish an estimate for the relative

orientation of the local ground plane. This served as a reference elevation when seg-

menting objects of interest. Since all objects of interest (persons) will be on the ground,

removing the ground plane separated the clusters by their inherent location in Euclidean

space. A ground plane at time k was described using 3 parameters a, b, c and the plane

equation

akx+ bky + ckz + d = 0 (1)

Note that d can easily be solved for if necessarry. Taking inspiration from [13], an

iterative re-weighted least squares (IRLS) approach was employed to fit a ground plane

to the points taken by the flash LIDAR.

The strength of the IRLS formulation when compared to more traditional ground

plane tracking approaches (e.g., RANSAC [14]) is that it integrated all a priori knowl-

edge of the ground plane orientation through temporal filtering and regularization. To

illustrate this, let

Πk−1 = ak−1x+ bk−1y + ck−1z + dk−1 = 0 (2)

denote our estimate for the ground plane at time k − 1, and Pk ∈ R3×m denote the m

points recovered from the LIDAR at time k. It was assumed that the ground plane ori-

entation changes with time, but slowly when compared to the scan rate of the LIDAR.

In other words, if a point ~pk = (xk, yk, zk) ∈ Pk were on the ground plane at time k,

then its distance from Πk−1 should be small in practice. IRLS exploits this constraint

by solving a problem of the form

min
a,b,c,d

m∑
i=1

W (~pki ,Πk−1)(axki + byki + czki + d)2 (3)

where ~pki denotes the ith of the m points from the LIDAR scan at time k, and W :

8
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R3 × Π → R is a weight function based upon the normal distance of a point in the

LIDAR scan to the estimated ground plane. In this work, W was a logistic function of

the form

W (x) =
1

1 +A ∗ eB(x−C)
+D (4)

It was empirically determined that values ofA = 0.9, B = 15, C = 0.1, andD = 0.02

worked well in practice. The resulting weight function is illustrated at Figure 2. The x-

Figure 2: Weighting function used for the IRLS algorithm.

axis represents the distance (in meters) from the previous ground plane, and the y-axis

is the weight assigned to the point. The logistics function was chosen because it has

an upper and lower bound, which are easily adjusted through the parameters. Note that

points close to the previous ground plane are given a high weight, and that the weight

quickly diminishes.

In practice, the IRLS algorithm input was constrained to use LIDAR points within

a range of 5 meters. This area was densely populated with points that described the

ground plane. To mitigate the effect of a greater density of points being returned from

closer ranges, the input was binned into 10 cm × 10 cm cells in the LIDAR’s x-z

(horizontal) plane, and the point with minimum y (vertical) value was used. The choice

of minimum was done to further reduce the impact of large vertical obstacles (e.g.,

walls). Finally, a set of seeds corresponding to points on the default ground plane was

also added to (3) to act as a regularization component. If the LIDAR’s view of the

9
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Figure 3: Ground plane tracking with the IFM. The inclined ground plane is clearly
tracked.

ground plane was occluded, the regularization component would be enough to make

an informed guess at the location of the ground plane. The amount of seeds had to

be determined carefully. Too many seeds would prevent the correct convergence of

the ground plane; while, too little seeds would not offer any regularization. It was

empirically determined that a 5×7 mesh of 35 points produced good results in practice.

Representative results from this process are illustrated at Figure 3, which shows the raw

3D scan from the IFM, along with the recovered ground plane.

Once Π was estimated, all points were rotated such that the new ground plane was

the vertical vector ~j. All points within a distance threshold of 5 cm (y ≤ 5) were

eliminated from the scan. The remaining points within 10 meters of the LIDAR were

then converted to a 64 × 50 × 100 voxel image where the x-z plane was relative to

Π (as per our rotation). The voxel image was then pre-processed using connected

component labeling to identify the set C = {C1, . . . , Cn} of objects of interest. A

connected component algorithm determines which points are connected, or considered

one cluster. This can be achieved in a variety of ways. This work used 26-connectivity

and an algorithm described in [15]. The scan, separated into clusters, was ready to be

classified.

10
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3.3 An Appearance-based Classifier

The appearance-based classifier assigned an object of interest to one of two classes:

person P or non-person P̄ . To accomplish this, each connected component Ck ∈ C re-

covered from the segmentation approach described in Section 3.2 was first transformed

into a compact six-dimensional feature vector: xk = [hk, wk, dk, vk, λk, ρk]
T . The

first four elements correspond to the maximum y-value (height), width, depth, and vol-

ume of the bounding box of Ck, respectively. Here λ denotes the percentage of pixels

above mid-height, to model the tendency of people to be top heavy. Finally, ρ repre-

sents the density of the x-y projection of Ck, which is defined as the number of pixels

in the projection divided by the total number of pixels in the associated bounding box.

This process is illustrated at Figure 4. Discussion on these features can be found in

Section 5.1.

Figure 4: Three-dimensional point cloud (left) and its associated x-y projection in the
voxelized image. Object density ρ is defined as the number of pixels in the projection
divided by the number of pixels in its bounding box.

The objective in this work was the discovery of observations that are elements of

the person class P . Note that P is a multi-modal distribution: persons can be viewed

from a variety of orientations, can exhibit different degrees of motion, can be par-

tially occluded, certain clothes can affect sensor performance, etc. As such, simple

11
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thresholding was not sufficiently robust for the required accuracy. The application of

the k-Nearest Neighbors (k-NN) classifier [16] was investigated. k-NN compares an

observed vector x′ to a set of labeled prototype vectors X = {x1, . . . ,xn} that are

known a priori, and assigns x′ to the class that occurs most frequently among its k

closest neighbors in X. k-NN classifiers excel at classifying multi-modal distributions,

which would typically require non-linear thresholding functions to segment.

k-NN requires supervised learning to estimate these difficult non-linear threshold-

ing functions, which in the context of the project amounted to establishing the P and P̄

classes. To this end, a total of 200 persons were imaged by the LIDAR from a range of

distances and relative orientations while driving the wheelchair through South Bethle-

hem. Additionally, a total of 350 non-person prototypes were also imaged to represent

the non-person class. Note that |P̄| > |P| to reflect the greater diversity of non-person

objects. Each image was then synthesized to a 6-D feature vector as outlined above.

k-NN classifiers require a distance metric for defining “nearness.” Both Minkowski

and Mahalanobis distance metrics were investigated. For the latter, the covariance ma-

trices (Σ) formed by the separate classes, the pooled classes, and combinations thereof

were examined. Ultimately, the Mahalanobis metric was chosen

d(x− x′)2 = (x− x′)
T

Σ−1 (x− x′) (5)

where Σ = (ΣP+ΣP̄)/2 was the average covariance of the two classes. This modeled

equal contributions from each of the two classes, and provided the best empirical results

of the alternatives that were considered. Further discussion of the distance metric can

be found in Section 5.2.

Traditional k-NN classifiers assign a unit vote to each prototype in the k nearest

neighbor set. This work instead employed a weighted voting scheme where each of the

k nearest prototypes received a number of votes equal to the squared distance to the

12
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test sample, i.e.,

WP =
∑
x∈P

d(x− x′)2, WP̄ =
∑
x∈P̄

d(x− x′)2 (6)

The test point x′ was then assigned to the class with the greatest weight. The ratio of

these weights Q(x′) = WP/(WP + WP̄) ∈ [0, 1] was also used as a quality metric,

and provided a confidence measure with respect to class assignment. Q = 1 indicated

that all k neighbors ∈ P , while Q = 0 is indicative of all k neighbors being from P̄ .

The use of Q is discussed in more detail in Section 3.5.

3.4 Tracking With An Extended Kalman Filter

Initial testing with the appearance-based classifier indicated it was capable of identi-

fying people with a high probability. However, the frequencies of both false negatives

and false positives were not insignificant. Expanding the k-NN prototype database with

the misclassificiations lowered the false positives but also lowered the classifications of

badly represented pedestrians. An example can be seen at Figure 5, where one floating

torso is successfully classified and the other is not.

To improve classifications of fragmented scans, while keeping the false positive

rate low, a second-stage motion-based classifier (MC) was added to the person de-

tection process. As input, the MC took the set of objects X′ = {x′1, . . . ,x′j} out-

put by the appearance classifier, along with their associated confidence scores Q =

{Q(x′1), . . . , Q(x′j)}. The objects in the set X′ were rotated and translated to the

world frame in the x-z plane (height and width). The rotation matrix was constructed

from the encoders on the Smart Wheelchair System.

The objective of the MC was to associate tracks with acandidate person. For each

x′(k) ∈ X′(k), if Q(x′(k)) ≥ QP =⇒ x′(k) ∈ P , and the MC immediately

associated a track t(k) ∈ T with the person x(k). For Q(x′(k)) < QP =⇒ x′(k) ∈

13
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P̄ , and the non-person object is subsequently ignored. Given two frames, at time k

and k+1, a track was generated if an object was related using a simple threshold on

the object’s velocities between the two frames. The track contained an object’s v and θ

determined from the finite differences of the two frames.

Successful application of this model enabled the prediction of the location of an

object given its velocity at the beginning of every frame.

xk+1 = xk + vk cos θk∆tyk+1 = yk + vk sin θk∆t (7)

An object in frame k + 1 was associated with an object from k using a simple dis-

tance threshold. Upon successful relation, a new velocity, vk+1 was calculated and the

old velocity vk was discarded. This basic model worked well as a proof-of-concept,

increasing our true positive rate.

Examination of the velocities, showed high variance between frames. One frame a

person may have a velocity of 1.8 m/s and in the next 0.9 m/s. This variance is expected

due to the strides of pedestrian and inaccuracies in the predictions and measurements.

It was apparent that smoothing and filtering of noise was necessary to achieve accurate

results. A Kalman filter fit this requirement perfectly. The MC evolved from using a

Kalman filter to an extended Kalman filter. Details on the motivation of this evolution

now follow.

3.4.1 Kalman Filtering

Kalman filtering is a mathematical method to estimate the state of a process observed

over time in such a manner that it minimizes the squared error. The Kalman filter pro-

duces values closer to the true values of measurements by analyzing the uncertainty

of predictions and measurements. These uncertainties are factored in when making

the final decision on the values of the current state. In other words, the Kalman filter

assumes that predictions are informed, and that sensors are not 100% accurate. Com-

14
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bining prediction and measurement increases the accuracy of the state description. A

quick review of the Kalman filter process is presented, but the reader is encouraged to

read [17] for a full review of the Kalman filtering process.

A Kalman filter estimates the state of a process described by a discrete linear

stochastic equation. There are two stages, a Time Update (prediction) phase and a

Measurement Update (correction) phase. In this work, the Kalman filter performed

the Time Update phase in the beginning of the frame analysis, and the Measurement

Update phase at the end of the frame analysis. Examination of each phase now follows.

During the Time Update phase, the Kalman filter made a prediction for the state

vector in the current frame, k+1, using the state vector from the previous frame, k. Ini-

tially, the state vector in this work was described using [x, y, ẋ, ẏ]
T . This state differed

from the state presented in the initial MC model. The state update equations were

x−k+1 = xk + ẋk∆t

y−k+1 = yk + ẏk∆t

ẋ−k+1 = ẋk

ẏ−k+1 = ẏk

(8)

Where x, y were the coordinates of the object being track, and ẋ, ẏ were the corre-

sponding velocities. ∆t was the time between frame k and frame k+1; it should now

be apparent why the Time Update phase was done in the beginning of frame k+1. Note

the presence of a “minus” sign by the variables, this denotes a prediction. These state

equations were chosen due to their linear nature, simplifying the tracking calculations.

In addition to predicting the state, the Time Update phase must project the uncer-

tainty of the prediction, P, into the current state.

P−k+1 = APtA
T + Q (9)

Where A was the 4 × 4 identity matrix I and Q was the covariance matrix associated
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with the process noise in Equation 8, in other words the uncertainty in prediction.

Under this Kalman filter, uncertainties were linearly dependent, and thus simple to

determine. Note that at every Time Update, the uncertainty matrix P increased by the

additional process noise in Q.

During the Measurement Update phase, the sensor generated the measurement vec-

tor, zk+1, which had the same inputs as the state vector. The purpose of this phase is

to use a portion of the prediction and a portion of the measurement to update the state

vector estimate. To determine how much weight to put on the sensor measurement, or

how much weight to put on the prediction, the Kalman gain Kk+1 was calculated.

Kk+1 = P−k+1

(
P−k+1 + R

)−1
(10)

Here R was the covariance matrix associated with the sensor and was related to the

measurement vector. The importance of this equation can be understood when ex-

amined as a scalar fraction. If the sensor covariance R is low, the Kalman gain will

approach 1. On the other hand, if the R dwarfs P−k+1, then the Kalman gain will

approach 0.

The Kalman gain was used to update the state vector, and the uncertainty associated

with the state at time k+1. The state vector xk+1 and uncertainty Pk+1 were calculated

using

xk+1 = x−k+1 + Kk+1

(
zk+1 − x−k+1

)
(11)

Pk+1 = (I −Kk+1) P−k+1 (12)

The prediction x−k+1 was added to a proportion of the difference between the measure-

ment vector zk+1 and the prediction x−k+1. If the Kalman gain was 1, implying that the

sensor has no uncertainty, then the full difference would be added, and the state vector

would be equal to the measurement vector. However, if there was high uncertainty
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in the sensor, the Kalman gain would approach 0, setting the state vector equal to the

prediction. To determine the uncertainty associated with the state at k+1, the Kalman

gain is subtracted from the Identity Matrix. If the Kalman gain was close to 1, the

covariance matrix Pk+1 would approach 0, essentially stating there is no uncertainty.

On the other hand a lower Kalman gain would only partially reduce the uncertainty in

our state estimate. The reader should note that the uncertainty cannot increase in this

stage, it can only decrease. This is in contrast to the Time Update phase, where the

uncertainty can only increase.

A Kalman gain of 1 is essentially the initial basic movement model. If Kalman

gain for the velocity term is 1, this implies that velocities from the previous frame are

simply discarded, and the new velocities are accepted. Kalman gains lower than 1,

imply that previous velocities also have an input on the decision of the current state.

This achieves smoothing through a priori information.

During the calculation of the variances of the state vector, it became apparent that

this Kalman filter would not function well. A person’s velocity had a variance inde-

pendent of direction; thus it could not be separated into a variance in the x-axis and

a variance in the y-axis. Calculating the variance for ẋ and ẏ would not describe the

variance of a person’s velocity. The variance in ẋ was dependent on the variance in ẏ

and vice versa. The solution was to examine a person’s velocity, v, as a magnitude, and

have an angle, θ, to describe the direction. The IFM did not measure v or θ, instead

these values were calculated by using the finite difference between two frames in same

manner as the initial model.
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3.4.2 Extended Kalman Filtering

Inclusion of the v and θ terms in the state and measurement vectors changed the state

transfer functions to

x−k+1 = xk + vk cos θk∆t

y−k+1 = yk + vk sin θk∆t

θ−k+1 = θk

v−k+1 = vk

(13)

These transfer functions are nonlinear. Uncertainties from these terms must be prop-

erly propagated between time steps. However, the original Kalman filter can only

propagate uncertainties linearly. The solution was to linearize the uncertainties, this

approach is known as an Extended Kalman filter.

An extended Kalman filter (EKF) follows the same processing scheme as the orig-

inal Kalman filter, employing the Time Update (prediction) and Measurement Update

(correction) phases. In this work, x and y were nonlinearly dependent on v and θ. Any

uncertainty in v and θ had to be added to the uncertainty in x and y. Unlike the original

Kalman filter, the EKF employs Jacobians to linearize the added uncertainty. There

were two types of uncertainty: uncertainty due to predictions Q and uncertainty due to

measurement R.

In the Time Update phase, the uncertainty equation had to be changed to

P−k+1 = Ak+1PkAT
k+1 + Wk+1QWT

k+1 (14)

where A was a Jacobian that propagates the uncertainties of v and θ from the previous

frame k into the uncertainty of x and y of the current frame k+1. The Jacobian W

linearizes the uncertainty from v and θ, which is inherent to the process functions, to

be added to the uncertainty from the previous frame, k. It should be noted that the

Jacobians A and W are calculated at each frame.
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3.4.3 Determination of Jacobians

The extended Kalman filter requires Jacobians to linearize uncertainty. Uncertainty

generated by v and θ propagated to the values of x and y in the state vector determined

by Equation 13. Since x, y are predicted solely from v and θ the prediction covariance

matrix Q was a 2×2 matrix. To calculate Q, the initial basic tracking model (Equation

7) was employed and scans of moving persons were taken. The covariance of the v and

θ in these scans was Q. The Jacobian Wt was used to propagate the uncertainty related

with v and θ. The derived Jacobians A and W were

Ak =



1 0 −vk sin θk∆t cos θk∆t

0 1 vk cos θk∆t sin θk∆t

0 0 1 0

0 0 0 1


Wk =



−vk sin θk∆t cos θk∆t

vk cos θk∆t sin θk∆t

1 0

0 1


(15)

To calculate the 4×4 sensor covariance R, scans of a person rotating in place were

taken. This allowed for easy correlation of the person between scans, ensuring that all

variance was from the sensor. The covariance of the entire measurement vector zt was

R. No linearization was done because the uncertainties from the sensor were added to

the prediction uncertainty.

3.5 The Complete Classifier

Using the constructed extended Kalman filter, the operation of the complete Motion-

based classifier is now described. In explaining its operation, the case at time k where

no tracks are yet established is considered first. For each x′(k) ∈ X′(k), ifQ(x′(k)) ≥

QP =⇒ x′(k) ∈ P , and the MC immediately associated a track t(k) ∈ T with the

person x(k). For Q(x′(k)) < QP =⇒ x′(k) ∈ P̄ , and the non-person object is

subsequently ignored.

Time k + 1 begins with a data association phase. If a track t(k) ∈ T established
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at time k cannot be associated with a person x′(k + 1) ∈ P based upon a maximum

distance threshold (like the initial motion-based classifier), the track was deleted. If

a successful data association is made, an extended Kalman filter was established to

facilitate future tracking and t(k) is moved to TEKF . Each track t ∈ TEKF was

parameterized by a state vector [x, y, θ, v]
T corresponding to the position, bearing, and

velocity of the person relative to the wheelchair. Note this implies that a track can only

persist in T for a single step before being either promoted to TEKF or deleted. Lastly,

if no association was made for a person x′j(k + 1), a new track tj(k + 1) was added

to T.

The more interesting case occurred at time step k + 2. First, all tracks in TEKF

are propagated in accordance with the EKF time update equations (Equation 13) A

data association phase was then made using these updated track positions with per-

sons in X′(k + 2) again based upon a distance threshold. If this data association fails,

the track was not immediately deleted. Instead, a lower hysteresis threshold Qmin

was employed for established tracks, and association with every x′(k + 2) ∈ P̄ , but

where Q(x′(k + 2)) > Qmin was attempted. This approach was particularly advan-

tageous when persons become partially occluded, or are on the edge of the LIDAR’s

field-of-view, the appearance classifier will often identify these as non-persons. How-

ever, established tracks provided additional confidence to the motion classifier, and as

a consequence it accepted a lower Q value as a result.

If still no association was made for a track t ∈ TEKF , the track was deleted. Oth-

erwise, once an association was made, the measurement update phase of the respective

EKF was run where

zk = [xk, yk, θk, vk]
T (16)

It should be noted that (16) was a simplification of the actual measurement process.

While the relative x-y positions of a person were estimated directly using the centroid

of the bounding box from the appearance classifier, θk and v were estimated using a
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finite difference approach from successive position estimates across two time steps.

However, this simplification worked well in practice. Once all tracks in TEKF were

processed, any tracks in T and persons in X′(k+ 2) were processed as in the previous

time step.

To summarize the motion classifier update phase:

1. Any tracks in TEKF were processed first. They were initially associated with

persons in P as identified by the appearance classifier, and if necessary with non-

persons x′ ∈ P̄ but where Q(x′) > Qmin. If either association succeeds, the

respective EKF was updated. Otherwise, the track was deleted.

2. Any tracks in T were processed second. They were associated with any persons

remaining in P . If this was successful, the respective track is moved to TEKF ,

and an EKF was initialized. Otherwise, the track was deleted.

3. Any persons remaining in P that were not associated with tracks in TEKF or T

were added to T.

4 EXPERIMENTAL RESULTS

All experiments were conducted on the Lehigh University campus. For ground-truth

data, both LIDAR frames and video images were simultaneously logged and times-

tamped for manual post-processing. The LIDAR exposure times were set to 150 ms

and 2000 ms, which empirically provided the best performance outdoors. This resulted

in a frame rate of approximately 8 Hz. Results now follow.

4.1 Appearance Classifier

The performance of the appearance classifier was characterized using single LIDAR

frames taken while manually driving the wheelchair across Lehigh’s campus. Samples

in the test set were disjoint from the training set used by the k-NN classifier. The
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goal of the appearance classifier was to minimize the number of false positives. False

negatives have the potential to be overridden by the motion classifier, as discussed in

Section 4.2.

A total of 105 images of persons and 464 non-persons were acquired. Classification

results with k = 5 and QP = 0.5 are presented in the confusion matrix below. Of the

Table 1: Confusion Matrix for k-NN Appearance Classifier
Decided

nonperson person

Actual nonperson 445 19
person 8 97

105 persons imaged, 97 were classified as persons, for a detection rate of 92.4%. Of

the 464 non-person objects imaged, 19 were classified as persons for a false-positive

rate of 4.1%.

In truth, the true-positive rate was lower than hoped. Upon reviewing misclas-

sifications, several pathological cases were identified. One was labeled the “floating

torso” problem. Due to the relatively low power of the IFM LIDAR, detection of

darker objects became problematic as range increased. In particular, when pedestrians

wore dark pants, the range which they could be detected dropped dramatically. The

net result was the appearance of a floating torso in space. This is illustrated at Figure

5. The frequency of these occurrences influenced the addition of several of these as

prototypes in the training set. Still, misclassifications of these instances were not un-

common. It should be noted that if the person continued to approach the wheelchair

and a more complete LIDAR scan is received, a correct classification resulted. A simi-

lar situation was observed in the other extreme, when a person started too close to the

wheelchair, resulting in an incomplete scan. As the person distanced themselves from

the wheelchair, a correct classification would result. However, beyond a certain dis-

tance, the quality of the scan would degrade. In these situtations, the motion classifier

was useful in maintaining a correct classification.
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Figure 5: Floating torso distributions. The top example was correctly classified as a
person, while the more fragmented bottom example was not.

4.2 Appearance + Motion-based Classifier

The second phase of testing involved evaluating the full-classifier in continuous, dy-

namic operations. Preliminary testing involved an approximately 5 minute run of driv-

ing the wheelchair across Lehigh’s Campus during normal hours to ensure sufficient

pedestrian traffic. Pedestrians were only counted once, meaning each entry was a

unique person. Classification was determined successful if an EKF track was estab-

lished on the pedestrian. For these tests, k = 5 and the Q parameters for the MC were

set to QP = 0.5 and Qmin = 0. The latter meant that if at least 1 of the 5 neigh-

bors believed the object was a person and an EKF track was established, the MC could

override the decision of the appearance classifier. Results are provide in the confusion

matrix below. From these results, it can be seen that 45 of 47 persons were classified

Table 2: Confusion Matrix for Complete Classifier
Decided

nonperson person

Actual nonperson 50 7
person 2 45
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correctly, for a detection rate of 95.7%. Examination of the two failure cases revealed

that both were instances where the pedestrian never completely entered the field of

view of the LIDAR. An example of this is shown at Figure 6, where the bottom half

of a pedestrian appears on the edge of the LIDAR’s field-of-view. If these cases are

excluded, the true positive detection rate would have been 100%.

Figure 6: A situation where the appearance classifier did not get a full view of the
pedestrian, deterring tracking and classification

During this experiment a false positive rate of over 12% was ascertained. The

increase from the static test can be attributed to the fact that during driving operations,

a single non-person object might be imaged 10s of times from a range of distances

and orientations. If it was incorrectly classified as a person for a single frame, it was

considered a false positive. In practice, associating conditional probabilities with such

cases would likely prove useful.

A strength of the MC for maintaining tracks is illustrated by Figure 7. In this exam-

ple, there are two persons in TEKF , meaning that EKF tracks have been established.

The person on the right side begins to migrate out of the LIDAR’s field-of-view to

a point where the appearance classifier no longer associates it with the person class.

Nevertheless, the MC is able to maintain a track until the person is almost entirely out
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Figure 7: A sequence of frames, showing the tracking of a person even after they fail
the appearance classifier.

of the LIDAR’s view.

5 DISCUSSION

5.1 Appearance Classifier And Features

As stated in the introduction, the success of pattern recognition is reliant on the fea-

tures extracted from the data. Many classifications methods exist, a review of which is

beyond the scope of this work. Some methods attempt to determine features on their

own; however, even these algorithms must be guided in the right direction.

A sizeable proportion of development time was spent on determining features that

would generate classifications correctly. The simplest features (height, width, and

depth) were chosen in the early stages of the algorithm and offered excellent results.

There are few classes that have similar height, width, and depth, implying that pedestri-

ans have a well defined mean (or distribution) in this feature space. To determine other

features, failure cases were examined. One of the earliest failure cases to be avoided
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was the “floating torso” distribution (Figure 5).

Failure when presented with floating torso’s was prevented in two manners. First,

the height, hk, for cluster Ck was determined by

hk = max
y

Ck (17)

This equation offset the height of floating torsos to the height of a scan of a full person.

Earlier equations used the height of the bounding box; this resulted in floating torso’s

height being halved, distancing it from the person class.

The failure case was also avoided by the introduction of λ, the top-heaviness fea-

ture.

λk =
|T |
|Ck|

where T =

{
~p | ~p ∈ Ck and py >

hk
2

}
(18)

The top heaviness feature depended on the heuristic that a person has more surface

area above their waste; more surface area equated to more pixels captured by the flash

LIDAR. However, this heuristic can be shown to fail. A specific, and interesting, failure

case occurred when women wore long dresses or skirts. The clothing provided enough

surface area to imbalance the top-heaviness ratio.

Of note-worthy mention is the density feature, ρ. Clusters Ck were taken and

flattened into the x-y plane (height and width plane.) This was achieved by ignoring

the z values of every point in the cluster. An example of the density feature can be

seen at Figure 4. The result was a two-dimensional, discrete binary image. Points were

indexed by pixel values (elements of N), instead of Euclidean values (elements of R).

As stated earlier, there is extensive research in using camera systems for pedestrian

detection. Most color approaches generate a mask, a binary image describing pixels

of interest, to examine the shape of a pedestrian. Extracting this binary image is a

computationally expensive procedure when working in RGB space. For LIDARs, this

procedure is computationally trivial. Upon extracting this mask, algorithms developed
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for analyzing geometry from a color image can be applied. These algorithms are refined

in producing powerful features for classification. It is important to reiterate that only

geometric features can be extracted. It is advantageous to reapply provenly powerful

techniques in new fields of research.

Not every feature developed was helpful, many features were discarded as they

proved to be disadvantageous. One of the earliest features discarded was the height-

width ratio, rk.

rk =
hk
wk

(19)

Heuristically, people are taller than they are wide, providing good grounds for use.

Computationally, this ratio was not consistent. Examination revealed the variation of

the ratio did not allow for proper segmentation from dissimilar classes (e.g., fire hy-

drants).

Attempts were made in describing the distributions of the clusters, Ck. The skew-

ness, γ, describes the assymetry of the distribution. Similar to the top-heaviness fea-

ture, it was expected that γ would favor the torso of the pedestrian.

γk =
µ(3)k

σ3
k

(20)

where µ(3)k represents the third moment arm from the mean of Ck and σk was the

standard deviation of the distribution.

The eigenvectors of the distribution of the clusters were also examined. Given a

covariance matrix Σk of cluster Ck, the eigenvectors were determined using

V−1ΣkV = D (21)

where V is the matrix of eigenvectors that diagnolizes the covariances matrix Σk into

the eigenvalues D of Σk. Eigenvectors describe the orientation of a distribution. It was

expected that pedestrians would typically be scanned while upright, producing a major
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eigenvector with nearly vertical orientation. Unfortunately, most scanned clusters of

other classes also had major vertical eigenvectors (e.g., trees, walls, posts).

5.2 k-NN Distance Metric

Pattern classification can neatly be described as assigning an object to a class given

the probabilities resultant from a priori information. k-NN classifiers are particularly

useful when there is no information on the probability of a class. The probability

distribution is estimated by a feature space populated by preclassified samples. k-NN

reduces to determining the class of the closest neighbors to the object in question. The

object in question is then assigned the majority class. The reader is reminded that

objects are described by a feature vector, and are thus points in feature space. Each

feature is a dimension in feature space. However, one can quickly infer that features

do not scale the same. The top-heaviness ratio, λk, is bounded between [0..1], while

height hk ∈ R. This difference in scale affects the distance, applying differing weight

to the distance of features.

Distance is a major aspect to the k-NN approach, thus a properly scaled distance

metric required careful consideration. Two approaches were extensively tested to pro-

vide the most consistent and accurate results: the Minkowski Metric and the Maha-

lanobis Distance.

The Minkowski Metric is defined using a level l parameter.

dl(x− x′) =
[
|x− x′|l

] 1
l

(22)

The reader should note that l = 1 is the Manhattan distance, and l = 2 is the well

known Euclidean distance metric. To normalize the feature spaces, such that each

feature has an equal part in the distance, a scaling factor α was applied to each feature

of the prototypes such that the feature’s standard deviation, σ = 1.

The Mahalanobis distance was described in Equation 5. Testing was done on what
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training data to use for the determination of the covariance matrix Σ. The training

data was classified by two classes, person P or non-person P̄ . A covariance matrix

determined using data from

1. P

2. P̄

3. Both P and P̄

was tested. Futhermore, Option 3 could be calculated in a number of ways. One attempt

calculated the covariance matrix of the set P ∪ P̄ . Another approach calculated the

covariance matrix of each class separately and averaged the two covariance matrices.

The latter approach provided consistently accurate results.

The Minkowksi metric consistently offered a lower false negative rate. A false neg-

ative is a person classified as a nonperson. This misclassification is considered costly,

and effort was taken for it to be avoided. The Minkowksi Metric also had a very high

false positive rate, a nonperson classified as a person. Mahalanobis distance offered an

overall lower rate. The false positive rate was much lower, while the false negative rate

was slightly higher. It was decided that the lower overall error rate of the Mahalanobis

distance was advantageous over the Minkowski’s Metric lower false negative rate. The

decision was influenced by the existance of the motion-based classifier’s added classi-

fication. A lower false positive rate reduces the number of tracks generated by the MC,

and false negatives are efficiently overruled by the tracking algorithm.

5.3 Evaluation of the Extended Kalman Filter

Time was spent examining the operation of the EKF, producing results worthy of dis-

cussion. A common trend of the filter was to relate the distance y of the object in

question to the gain value for the velocity. As y increased, the EKF was less and less

certain of the v measured, lowering the Kalman gain for the v term. This trend is un-

derstandable as measurements became inaccurate at larger distances; inaccuracies were
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caused by inherent noise from the sensor as well as the inconsistent quality of scans

of objects at a large distance. Inconsistent scans generated differing centroids as the

appearance of the object to the IFM changed.

The EKF consistently produced accurate predictions, adjusting well when a pedes-

trian made a sudden change in direction. Furthermore, the velocity was smoothed due

to the use of the Kalman gain. This smoothing increased the error of the prediction in

some frames by preventing a drastic change in velocity, even if that change was present;

however, in the common case, the drastic change in velocity was attributed to noise.

More importantly, the error caused by the Kalman gain was now consistent. Consistent

errors are more advantageous than sporadical accuracy.

6 FUTURE WORK

The greatest limitation of the IFM LIDAR system was its relatively coarse angular

resolution. This made it difficult to segment pedestrians that were walking in close

proximity to one another. An example is shown at Figure 8. In this instance, all three

persons were lumped into a single cluster where from the ground-truth camera image

they are obviously disconnected. One potential means for handling these cases would

be to refine larger connected components using a k-means clustering approach, where

k could be correlated to the geometry of the bounding box. More work is required in

this area.

An oversight in this work was the calculation of the density feature. Currently,

the feature is generated by binning all pixels into 10 cm × 10 cm boxes (in the x-y

plane), which discretized the Euclidean points. However, this approach took a coarse

scan and created an even coarser image as seen at Figure 4. The IFM LDAR returned

scans in three 64 × 50 matrices (x, y, and z). Using the discretization provided by

the original scan may prove advantageous. However, this would require a restructuring

of the prototype database. Currently, the database is populated by clusters of points
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Figure 8: Where the CCL was unable to seprate the objects of interest.

(where each cluster represents one prototype.) The pattern classifier converts each

cluster into a feature vector at intialization. The strength of the current structure is

the ability to generate new features without manipulating the database. However, the

current structure removes the contextual information provided by the organization of

the original scan. More research needs to be done into a method to discretize the points

in the database into a binary image.

The appearance classifier is still a work in progress. As discussed, there exist many

well developed features that can be extracted from binary images. Currently, research

on and application of this subset of features has not be undertaken. The search for

features is one that can be described as having no end. There are always properties

which can be discovered to further separate classes, creating more accurate classifiers.

However, even the most advanced features will be useless if the underlying knowledge

base is not populated. There is always room for more prototypes in a k-NN database, a

position taken by many pattern recognition researchers. The case for this position can

be made by examining Figure 9. The person class is not well enveloped in the presented

figure. Due to the bad distribution of prototypes (black dots), an object is misclassified

(red) as the closest neighbors to it are in the Person Class. More features may be helpful

in this particular instance, however a similar hole can be found in another area of the

feature space. In the perfect world, there would be a infinite number of prototypes,
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Figure 9: An instance in feature space where the person class is not well enveloped,
causing a misclassification (red). The black dots represent prototypes that are not part
of the Person Class.

thus generating the perfect distribution. It should be noted that increasing the size of

the database increases the complexity of the computation, as more distances need to be

determined. This dilemma is inherent to the k-NN classifier. A possible solution is to

construct an algorithm that spaces all prototypes in the database, filling in the holes as

misclassifications occur and pruning overpopulated areas. This algorithm can be run

offline as the database is indepedent of the classifier.

To this point, only single values for the parameters QP and Qmin have been exam-

ined. A sensitivity analysis to tune these parameters may in fact improve performance.

7 CONCLUSION

In this work, the potential of low-cost 3D LIDARs to be applied to a people tracking

task was demonstrated. While providing significantly lower angular resolution than

their more expensive cousins, these systems still provide the accurate distance estimates

and illumination invariance associated with LIDAR systems. A k-Nearest Neighbour
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classifier was constructed to determine objects to track based on appearance. An ex-

tended Kalman filter was established to aid the appearance classifier with fragmented

scans. Preliminary results to date indicated a successful tracking rate of over 95%

during dynamic operations. Nevertheless, there is significant room for improvement.
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